
AD-A096 755 SOUTH CAROLINA UNIV COLUMBIA F/B 9/2
DATA STRUCTURE DEFINITION AND ACCESS CONTROL FACILITIES FOR LAN-ETC(U)
FEB 81 0 6 CLAYBROOK. A DISCEPOLO, OAA2)-B-C-0022

F UNCLASSIFIED
AR0-17157.1-EL NL

'' h EE, hh
EEnohhEEEED4hhhE

-8.01 2 25

11111 __ II____ I~II2.2

111111.2.5 I.4 -6

UNCLASSIFIED -

SECUI41TY CLASSIFICATION OF THIS PAGE (Wen Does Entered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONSREPOT DCUMNTATON AGEBEFORE COMPLETING FORM
1WOftT NUMmE .GV ACCESSION NO. I RECIPIENT'S CATALOG NUMBER

(1715 7.1 -E L
4 4 T IT L E 'm d .S u b .hfe :)

E. Y O F R E P O R 3T - P E R IO D C O V E

Data Structure Definition and Access Coo- V Final Repent

Facilities for Languages Designed for the 11 c 9-1 c 0-
Development of Reliable Software , 1/ ___

A /abo DAG29 80C-4 622
-9E~f0 0 PRORAM ELEMENT, PROJECT. TASK

University of South Carolina AREA &WORK UNIT NUMBERS

Columbia, SC 29208

11. CONTROLLING OFFICE NAME AND ADDRESS '2. REFPOR. ?ATE,~ ,

U. SlT R sac NOTES8

auNThORIs) ANdY shoul nAOREt be c o rasn Official Deatmn ALURITYCLASof the rey

pos ti n, p l cy o de is o ul es so d sign tedsyiot e doc m
n a i n

IS. ~~~~~ ~I. KEYL WOROS FC1~m, C, AT ONd DOW neGein ADd Nantr Gl IC n

for DITheUT SpeiiATioEN (of abisRat) dttyEsadnacesotrlfiiysu-

LI.J Ae e for nc usion i highlevsel programmtin ulangua e. The re e r h Xa o

intnde DSRBTION iTTNclde the dbttesintee of v alc complet deenug but insotea)nole h

devpet oproming languae featres cotatid in threpr deopme ofth

lanaes dbeine fo peroduachn relabted sofware Ao eeonstuca specification to

C- method was developed for specifying abstract data types. Abstract data types

// s 23 0 0"LT UNCLASSIFID Ic

SECURITY CLASSIFICATION OF THIS PAGE(W7h.n Date gntored) 17157. 1 -EL

20. ABS7;RACP CONT INUED

f>are specified using the module encapsulation mechanism. A constructive

specification consists of two parts: a logical structure specification and a

semantics of operations specification. The constructive specification method

is described in the following pages.

Accession Fo

tX1S- GRA91

DTIC TAB

3~tificatiO

a 1
0 M ~

DiForeta

ti
13

C

[

-PstruAIvc~sIk AT o HSPGn/-. 1I ~V~d

/1/51Z /.-C

Final Report

U. S. Army Research Office Contract No. DAAG29-80-C-0022

entitled

I.
Data Structure Definition and Access Control
Facilities for Languages Designed for the

Development of Reliable Software

University of South Carolina

October 20, 1979 - October 19, 1980

Billy G. Claybrook

Principal Investigator

1.0 Introduction

The concept of abstraction has become an important part of problem

solving and in particular software development. Through the use of abstract

ddta types, programs can De written that manipulate objects of a given type

without being concerned with how the primitive operations on the objects are

implemented.

In this paper we describe a constructive (or operational)

specification method for specifying abstract data types. We limit our

discussion to the specification of data abstractions and do not treat

procedural abstractions. A constructive method specifies how a type's

operations affect instances of the type. By this definition, the abstract

model ([BERZV79]) approach can be considered a constructive specification

method while the algebraic method ([GUTTJ75], [GOGUJ78]) is

nonconstructive.

Tne work described in this paper includes some impor*tant changes in

notation to the constructive specification method described by the author in

[CLAYB9] and [CLAYB80]. The improvements in notation permit more concise and

more readable specifications to be written. This paper gives a more detailed

description of the method, especially with respect to proofs of implementation

correctness.

This paper is organized as follows. In the next section we present some

preliminary concepts dealing with the algebraic and abstract model

specification methods. In Setion 3 we describe the constructive

specification method by specifying stack, mapping and symboltable data types.

Then in Sections 4 and 5, we discuss implementing and proving implementation

correctness for abstract data types specified constructively using the

Symboltable data type. The symboltable data type example was chosen because

it is a nontrivial example and because the reader can readily compare the

constructive specification given for it in this paper with Guttag's algebraic

Problem Studied

The proposed research was to develop a specification method for the

specification of abstract data types and an access control facility suitable

for inclusion in high-level programming languages. The research was not

intended to include the design of a complete language but instead involved the

development of programming language features that aid in the development of

languages designed for producing reliable software.

Results of the Research

To meet the objectives of this research, a constructive specification

method was developed for specifying abstract data types. Abstract data types

are specified using the module encapsulation mechanism. A constructive

specification consists of two parts: a logical structure specification and a -

semantics of operations specification. The constructive specification method

is described in the following pages.

specification (in [GUTTJ78]). In Section 6 we treat a database view as a

data abstraction and realize it as an abstract data type and specify it using

the constructive specification method. This particular example differs from

the other data types specified in this paper because the representation data

is shared by all instances of the database view. In addition, it illustrates

at least one important difference between the constructive method and the

algebraic method. Finally, in Section 7 we present a rather detailed

comparison of specification methoas.

2.0 Preliminaries

An abstract data type can be viewed as a set of vdlues (or objects)

and a set of operations applicable to the values. The definition of an

abstract data type consists of a specification of tne type and an

implementation of the type. A specification of a type is a

representation-independent description of all properties of the type. This

includes specifying the syntax and semantics of a set of primitive operations

applicable to the type. The implementation of a type involves assigning a

representation for the set of objects defined and tnen implementing the type's

primitive operations on the representation selected. A stack data type, for

example, is often re-resented by a vector and the stack operations, e.g. push,

pop, etc., are implemented using the vector and its operations. In turn, the

vector type itself has a representation, such as a contiguous block of memory

cells, and a set of operations implemented in terms of this representation.

A substantial amount of work has been done to develop cpecification

methods and languages. These approaches to specification have usually been

classified as algebraic specifications ([ZILLS75], [GUTTJ78], [GOUGJ78]) and

aDstract model specifications ([BERZV79], [WULFW76], [HOARA72]). Each

approach has its adventages and disadiantaqes ([GUTTJ78], [BERZV79]).

Presently, the most popular method for specifying abstract data types is

the algebraic specification method. The reason for this appears to be

twofold: (1) the algebraic method has a mathematical basis in algebra and

has been formalized, and (2) the algebraic method has been widely publicized.

When an abstract data type is specified algebraically, it is viewed as

an algebra. One then writes the syntax of the operations and the axioms of

the corresponding algebra. The syntax specification defines the names,

domains and ranges of the type's primitive operations. Writing the axioms is

considered to be the semantic specification. The axioms are written in the

form of equations (or rewrite rules) which relate the primitive operationsr

of the type to each other. To prove implementation correctness, one must show

that an implementation satisfies all the axioms.

With the abstract model approach, an abstract representation (or

abstract object) is selected for objects of the type being defined. It is

important that the users of a type know what its abstract representation is

since the semantics of the type's operations are specified with respect to the

abstract representation. For example, the abstract representation of a stack

is usually a mathematical sequence. The syntax of a type's operations is

defined just as it is in the algebraic approach. The difference between these

two methods involves specification of the semantics of operations. The

semantics of a type's operations are specified by specifying how each of the

operations affects the abstract object (some operations such as membership

and retrieval operations do not change the state of the abstract object.)

This essentially means that to specify the semantics of a type's operations we

specify how the~ operations affect an instance of the type. To prove

implementation correctness, the implementation of each individual operation is

proven correct (with respect to the semantics specified for it). It is

noteworthy to point out here that an abstract object's operations are used

only in specifying the semantics of a type's operations and are not used in

implementing the type.

It is important thdt abstract data types be specified using a formal

specification language for at least three reasons:

1) communicating the properties of a type in a precise

and unambiguous manner,

2) proving implementation correctness, and

3) designing abstractions.

Communication of properties in a clear and concise manner is important because

this permits a type to be understood by both the user of the type and the

implementer of the type. Proving implementation correctness, though often

nontrivial, should be done when it is an important aspect of software

development for an organization using the resulting software. For instance,

several governmental agencies believe that trusted software, i.e. verified

software, is important for security reasons. Formal specification as an aid

to the design of data abstractions may be the most important reason for doing

the specification. From our experience in realizing data abstractions ranging

from simple abstractions such as stacks to more complex abstractions such as

database views, formclly specifying an abstraction usually leads to a "better"

and often simpler abstraction. With the exception of a few cases such as the

one just mentioned, ease of demonstrating consistency of specifications and

implementations is often of lesser importance than ease of examinining and

ianipulating specifications.

3.0 The Constructive Specification Method

As stated above, a complete definition of an abstract data type consists

of a specification of the type and an implementation of the type.

Specification details are visible to a programmer while implementation details

are hidden from programmer use. We will use the module encapsulation

mechanism described in [CLAYB80] to define abstract data types.

The constructive specification of an abstract data type consists of two

parts: a logical structure specification and an operation specification.

Each of these specifications is discussed in detail below.

3.1 The logical structure specification

When a programmer specifies an abstract data type, he usually has some

preconceived notions about the data abstraction such as what an instance

"looks like" (independent of any concrete representation), relationship(s),

if any, between constituent objects, etc. (an instance of a type consists of

a collection of constituent objects). In the constructive approach, these

notions are communicated to the user and implementer of a type via a logical

structure specification. These notions tend to make understanding a type

easier ana hence aid in communicating properties of a type. A logical

structure specification essenti3lly defines an abstract model of the type

being specified. It does this by defining relationship(s), if any, between

constituent objects, by defining restrictions to the relationship(s), and by

expressing an instance of the type as a tuple of elements. The elements of

Such a tuple may be sets of constituent objects and relationship(s).

A logical structure specification does not specify an abstract data

type; however, it is an important part of the specification of a type because

the semantics of operations are specified in terms of how they affect an

instance of the type.

The unhounded stack data type in Figure I illustrates the various parts

of a logical structure specification. The objects section contains the names

of the types of constituent objects. Constituent object types can be defined

within a logical structure specification (see Figures 2 and 3) or they can

be passed as parameter(s) to a defining module (see Figure 1). The

relationships section defines any relationship(s) that may exist between

constituent objects.

module mapping[domaintype: Type, rangetype: Type ;
Togical structure

objects
type NODE = record NAME: domaintype;

ATTRIB: rangetype
end;

occurrence <M: collection NODE>

operations
syntax

NEWMAP: - mapping
defmap: mapping x domaintype x rangetype j, mapping
evmap: mapping x domaintype -& rangetypeu[UNDEFINEDI
isdefined: mapping x domaintype -* boolean

semantics
ID: domaintype; ATTRLIST: rangetype; m: mapping;
NEWMAP =

evmap(m,ID) = if 4x -C m " x.NAME = ID
then x.ATTRIB else UNDEFINED;

isdefined(m, ID) = if J x t m x.NAME= ID
then TRUE else FALSE;

defmap(m, ID, ATTRLIST) = m u x with [NAME ID,
ATTRIB = ATTRLIST]J

end mapping;

Figure 2. Constructive specification of mapping nata type

i'

-B~~--..-- -

module stack[elementtype: Type];

logical structure

object ELEM: elementtype
rlationships ONTOPOF: ELEM to ELEM
occurrence <S: collection ELEM, 0: ONIOPOF>
Invdriant assertions

I. ONTOPOF is linear

operations
syntax

NEWSTACK: :> stack
push: stack x elementtype Bo stack
pop: stack N stack
top: stack - elementtype u (UNDEFINEDI
replace: stack x elementtype - stack u fERROR3

semantics
x, y, z: elementtype; s: stack;
NEWSTACK = </, If>

push(s, x) = s with [S =Si ufXI , 0 = if
s = NEWSTACK then else 0 u/x, top(s4

pop(s) = if S = 0 then NEWSTACK
elses with 7' -S - fx3 , 0 0 -0 x, >

'xT y-40] where x top(s)

top(s) = if s = NEWSTACK then UNDEFINED else x
wnere x4 S and (y---S) (y, x> &O)

replace(s, x) = if s = NEWSTACK then ERROR

else s with-TS (S - Iy} {x],
0 To-TO - y,z>) u[,x, z>]
where y = top(s)

end stack;

Figure 1. Constructive specification of unbounded stack type

TII

.. .. 1..

module symnboltable[domaintype: Type-, ranget~pp-: Typel;

logical structure
objects

Typel t(' corc NAME: oomaintypo;
ATTRIB: rangetype

end;
type BLOCK =record CONTENTS: collection NODE; enc:;

relationsnips NESTED: BLOCK to BLOCK
occurrence < N: collI Iec t ion NODE ,

B : collection BLOCK, ND: NE STED>
invariant assertions

1. NLSTED is linear
2. ~b-4 T~ ii , 4 > k N D)i B

operations
syntax

INIT: -~syniDoitable

*currentolock: symboltable --- BLOCK
enterb~ock: symooltable -. ~syroltjhnie
leaveoiock: symboltable -.- svmocltable
i s in o oc k: syinboltaole x comamntype ;j, n)oolean
retrieve: syinboltable x domaintype -brangetype
aodid: syrnboltable x oomaintype x rangetyp? -

semantics
b, El, cb: BLOCK; x: NODE; !D: ior-a i ntype;
ATTRLIST: rangetype; s: symboltacle;

INIT = s with [N B =, B[b witr jo.CON7TENTS
j

currentblock(s) =b where Ll 41i, b) 4 N D

enterblock (S) s with [B Uf[0 with) [-CONTENTS=
ND =ND u (, cb > j &w'ere bIB

leaveblock(s) if ND = / then INIT
else S Y~ith [N N -- Icb.CONTENTS3
B =B -[ct3
ND ND - [<c!), 0,> Vcb, b>4 N03I

isinblock(s, ID) = if .4 x -+r ct).CUNTE N!S - x. NAME = I D
tnen TRUE else FALSE;

retrieve(s,ID) =if s INIT then UNDEFINED
else if 3 x cb.CUONTCNTS 4x.NAME = 10

E'Fen x.ATTRIB
eTs-eretrieve(leaveblock(s), ID);

addio(s, ID, ATTRLIST) = s with [LN =N v {x with
[NAME =ID, ATTRISW=ATTRLI.T]

endsymolabl; = B with [cb.CONTENTS c= .CNTENTS LVtx31];

Figure 3. Constructive specification of symboltable data type

Possibly the most important ingredient of a logical structure

specification is the invariant assertion. The primary functions of the

invariant assertion are to specify restrictions to relationships and to

specify assertions about the model on which the semantics of operations are

specified. When the semantics of operations are spe:ifie, care must be taken

to ensure that the operations do not "violate" or "ignore" any of the

assertions.

Tne aUstract data types specified in this paper do not retlect the true

importance of the invariant assertions. Invariant assertions are particularly

valuable in specifying austract data types wnere there are several

relationships between constituent objects and there are important restrictions

to these relationships. For example, in specifying database views there are

usually several relationships between entity types. As an example, a

specification of the presidential database descrioed in [TAYLR76] required 26

invariant assertions. In this context, a logical structure specification is

analoguous to a database subscnema definition. However, there is an important

difference betweeen a logical structure specification and say a CODASYL

subschema definition. The invariant assertions of a logical structure

specification define the semantics of the relationships between entity types.

A CODASYL suoschema definition can only define the syntax of the relationships

and not the semantics.

Wyckoff ([WYCKM80]) has suggested the use of diagrams to pictorially

describe data types specified using the constructive approach. These diagrams

can be used to aid in the specification of a data type or by a user and an

implementer to help them understand the type. A diagram can be drawn directly

from a logical structure specification. Diagrams for the stack, mapping and

symboltable data types are shown in Figure 4. As we will see, the diagrams in

Figure 4 aid us in developing and understanding the correspondence function

given in Figure 6. In these diagrams a R b, i.e. object a is related to

object b via relation R, is represented as

a I

To take a closer look at logical structure specifications, we examine

the unbounded stack data type and the symboltable data type in Figures I and

3, respectively. The stack type is a parameterized type with the type of

elements in a stack instance passed as a parameter. An instance of the stack

type consists of a collection of objects of type elementtype. The

relationship between the elements of the stack is ONTOPOF; ONTOPOF is linear

([CLAYB79] provides a list of terms, such as linear, is ordered on, etc., that

expedite writing invariant assertions.) The terms used in this paper should

be self explanatory.

... "ira i| i I

e 3 e l

N3 N2 NI

Ni: NODE, ei: elementtype;
ONTOPOF = [4N3 , N2 > , 4N2 , NI>}

4(a) diagram of stack data type

M3 M2 M1

Mi: NODE; d,: domaintype; rl: rangetype;

4(b) diagram of mapping data type

ia d attrl~ist fN31 N3n3 N21 ,N2n2 NII ,Nlnli

Nij b3 b2 b1

Nij: NODE; bi: BLOCK; ia: oomaintype; attrlist: rangetype;

NESTED = (4b3, b2> , 4b 2 , b1>1

4(c) diagram of symboltable data type

Figure 4. Diagrams of stack, mapping and symboltable data types

Constituent objects of a symbol table consist of instances of BLOCK and

NODE. These object types are aefined within module symboltable; however, the

types of the component elements of NODE are passed as parameters. The

relationships and occurrence sections need no explanation; however, the

invariant assertions section does require some explanation. Assertion 2 states

that there is a block which is assumed to be global to all blocks in a

program. This same assumption is made in Guttag's specification of the

symboltable data type ([GUTTJ78]) but it is not explicitly stated.

3.2 Specification of operations

The operations section consists of two parts: o syntax specification irij

a semantics specification. The syntax section defines the names, domains an j

ranges of a type's primitive operations. Hidden (or auxiliary) operations,

i.e. operations that are used in specifying other operations but are not

available for programmer use, are indicated by placing an asterisk ('*') to

the left of their name. Operation currentblock in Figure 3 is an example of a

hidden operation.

In many cases, specifying the semantics of a set oi operations using tre

constructive approach is straightforward. With respect to the symboltable data

type in Figure 3, tne INIT operation credtes a symbol ta.<le arud establishes the

outermost scope. Operation enterblock establishes a new block nested in the

current ulock anu leavdblOCK removes the current inter mst)iok. Operation

isinolock tests whether or not an identifier has been declared in the current

blOCK and retrieve reLrieves the attribute list of an iuntifier from the hlU1tK

closest to the innermost block. Operation addid is explained by the following

example. The symool table for the program shown in Figure at the point of

compilation indicated by the arrow is given by

addid(adaid(enterblock(adoid(init, x, real)), x, COmpI>LX, y, complex).

begin
x: real;

begin
x, y: complex;

end

end

Figure 5. Program segment

ij

4.0 Implementation of Abstract Data Types

An implementation Ot an abstract data type usiny tri rontructive

specification metnod c, isists of a representation speciitication followed by

an implementation of the type's operations &itn resperft tu the

representation. The represeftdtioN specification ot ar a:,,tract data type

indlcdte the Loncret,, objet s) ,,ed tu represent tit t yo, dld the

correspondence between an dtstrdCt object and its conreto 3bJet).

Corresponuence Is OeT lfed as a tuiCt oi truin concretr ,- I tu dr dL)sttdc t

object. The correspunoence function u', a no(.nrphism at i's identIcal in

functionality to tn a:)stratior, functi~ r o' H7-I,,re k L " -.. ' - . A

correspondence tinction is named and it is used in proof,, at implementatio-,

correctness.

A correspondence function may be re It i Iy S IMpiI a It o ir tit-

symooltable data type and its representation, or it may ot Qo,;te cOmpt-x. In

general, the more dissimilar the concrete objects, i tn.. i _t,a I4 'alu.', trnP,

represent, the more complex the correspondence funct ion.

Tte cot respunlence t unct ion tor tnir iTp I emi I t o, ' 1' t' ym ,I tdtb It

data type in Figure b is SYMi. The cuncrctt objects in tnls cast are

instances of the stack and mapping data types spec ifeie In Fiqjres c, and 3,

respectively. SYMT maps these concrete objects into a s muol table. The

occurrence tuple shown in Figure r represents an .ccurren,_t)t sym',oitaole

where N = UM, B = S and ND = 0. M is definedl in Fiqure / a,,] and 0 are

defined in Figure 1. This detinition of SY M7 -an bt, ea,I Iv ut,,,erstood)y

looking at Figure 4. Implicit in the definition of SYMI is tt,e tact that d

blocK is eojivalent to an element of a stack ana each ekIrent of a stack i.

collection of mappings.

The implementation section provides an implempntiti .i of an dbstrdCt

data type's operations in terms of concrete object(s) ar: cun(crpte object

L~~ah- -- ILAl' llI

operations. An implementation of dn operation is specified using composition

of operations, tests for equality (or inequality) and the if-then-else

coistruct. An inmplt-mentdtion of tne symboltable data type is given in Figure

6.

represent it ion

S)inlat): symtoltaDle; stk: stacK; m: rdpping"
symtatu = SYMT(stk~m)) where SYMT(stK~m)) = <uM, S, 0)

impI enentat ion

St : StdtL-K id: dora in type; attr: ranietype;

INIT = SfMT(pusnINEWSTAK, NEWMAP))

entri Ic SY Yt'rtK)) = Y'M(pusnstK, N v WMAP)

audhd(SYM. stk), 1d, attr) =
T r-ep Iac ek st,, def Map, tUp st K I, i d, at t r)

leavf IockYMT(stk) = it 0 = tie
S'MT(pusn7N7 TA,.K, NEWMAP))

else SYMT(pop(stK))

retrieve SYMThstK), ia = if stk = pushkNEWSTACK, NEWMAP)

then UNL1iF-NE 0

Tfisjefinedtop(stk), id)
then evrnap(top(stk), id)
e-se rttrieve(leaveblock(

SYMT (stk)) , id)

isinolOck(SY'Ml(stk), Ia) = isdefined(top~stk), id)

curreitti ocK ,SYM (stK) = top(stk

Figure 6. A representation and an implementation of syrntoltable data type

5.0 Provin Imp ernrtdtor '()rrectnis

For the constructive specif ication method, a proof of implementation

correctness invulves snowing thit the implementation ot earn individual

operation is corroct with respect to a correspondence function. That is, for

the symoltaule data type we must show the following:

for each symboltable operation 7" show that

U-(SYMT) = SYMT(r-'), where q- san

implementation of g-

A pictorial view of SYMT is given in Figure 7 using the implementation of

symboltable operation addid. This pictorial description suggests that proving

implementation correctness involves showing that the instance resulting from

the left side of each operation implementation (given in Figure 6) is the

same as the instance resulting from tne corresponoing right sioe.

replace(stk))b st,''

SYMT SYMT

addi d(symtab, ... symtaD'

Figure 7. Pictorial meaning of addid(SYMT) = SYMT(replace)

Before a proof of implementation correctness can be done for the

symDoltable data type, it is necessary to prove an implementation invariant.

In general, an implementation invariant is a property that is true for all

values of a type produced by an implementation uf the type. An implementation

invariant comes up as one proceeds through a proof of correctness. They make

tnemselves Obvious when the rewrite process during d proof can no longer

continue. In general, one may not know all the implementation invariants when

a proof is initiated.

For the symuoltable, the following implementation invariant, posed as a

theorem, must be proven:

for each symuoltable - SYMT(stk), stk / NEWSTACK.

To prove the theorem, we must show that the invariant is true for all

symboltable operations that produce symooltable values. Since INIT,

enterblock, addid, and leaveblock are the symboltable operations that produce

I

Proof

right side

SYMT(push(stk, NEWMAP))

- SfMT(stk with [S = SCJNLwMAP , 0 = If StK NEWSTA,.K
then--7-else O e'NEWMAP, top(stkT,>J]
TFy-sem-antics of push)

- SYMT(stk witn [S = Su {NEWMAPJ , 0
top(st)T]]

(by implementation invariant)

symtab with [B = BU{U with [CONTENTS :A'/ t l,
N D =ND-ut[(b, c 0>3IT-

(Dy correspondence function SYMT in Fig,r

left side

enterDlock(SYMT(stK)) = enterulock(symtaD)
(by definition of SYMT)

= symtab with [B U [D with LCONTENT S =
NNDV(Ib, c 63T] where B

(by semantics of enterblock)

The left and right sides are equal since NWMAP -

Figure 9. Proof of implementation correctness for operation enterblow

5.1 Comments on proofs of implementation correctr~ess

Proofs of implementation correctness for types specifieo using the

constructive approach are relatively straightforward. For tro- constructive

specification of the symboltable data type the degree of difficulty for a

proof of implementation correctness is about the same as for Guttag's

algebraic specification (see [GUTTJ78]). Tht proof of implementation

correctness for the symooltaole implementation given in Figqire 6 is relativelY

simple since the representation ano instances of the type are very similar in

nature. When the representation of a type and instances of the type are

dissimilar, in general, the proofs become more difficult. For example, we

specified an orderea linear list (using both the algebraic specif' ition

r

symioltdole va', - ?t t IcS to srloW tnat YVei d stack, stK, for which the

invariant is true, each of these operations produces a new stacK for which the

invaridit is ,till true. Tnus, we w~il have shown inductively that the

I)vdr Iaft IS t r tj d V dl es of the synoultaole type. Wyckoff

k L Pvt: .) ,.t prut of the invariant; we repedt only the proof

inv , r 04 ratI Oil add] IJ see Figure 8).

. tk ii , S MTM(replace(stK, defmap(topstK), id, attr)))
(by implementation of operation addid)

' st / NErSTACK by hypothesis Lird letting
= defmap(top(stk), Id, dttr)

K W I V Z'>) Li
z> whe~re y to stk)

%) t semantics of replace)

SY s "s Y;~ rierv st NEwSTACK

T nitore tht inviriant is true Ior operat(ur, aidjid.

Figure 6. Proot of the implementation invariant using operation addid.

A comlete prout oft implementdtion correctness for ttie implementation

given in Figure b is qiver by WycKoff. To illustrate our proof procedure, we

repeat only a proot of implementation correctness for operatio enterblock

(sev Figure 9). The other proofs are similar. In Fiqure Q we show

enterblocs(SYMTst)) = SYMT(puSh(stK, NbW',A

by Showing that the instances resulting from the left arid right sides are

identical.

The development of the right side in Figure 4 makes use of the semantics

of stack operation ZuSh, the implementation invariant defined above, the

function SYMT, and tht fact that cb = top(stx). The oevelopment of the left

side is simpler and makes use of the semantics of operation enterblork and

SYMT.

method and the constructive method) and then implemented it using a binary

searcn tree. In our attempts to complete a proof of implementation

correctness for the list, we had to consider several special cases of the

binary searcn tree for butn specifications. For tre dlytrbraic specification,

considerable ingenuity wa required as well as proving some auxiliary theorems

to permit rewriting to continue during proofs (see LCLAY68I]). Like the

proofs for the algebraic specification of the linear list, the proofs for the

constructive specification were relatively long; however', tney were

straightforward in comparison.

6.0 A Database View Example

In this section we realize a database view an an abstract data type and

specify it using the constructive specification method. This example is

included because database views are substantially different than the other

data abstractions specified in this paper. The difference exists because

databases are normally shared data objects with many ditferen users capable

of updating the database and the updates may affect the values of a view.

A database view is an abstraction of an underlying database. A view has

the following properties:

1) an underlying database is assumed to exist, otherwise, it is

impossible to derive a view,

2) views are not materialized, i.e. they are not stored in a

database, and

3) in a shared database environment, some values of a view may

be created by other users who are updating the underlying

database.

An underlying database is considered to be the representation of a database

view and an implementation of a database view is an implementation of the

view's operations with respect to the underlying database.

-,LAU,

In the example described below, the database view specified is a

relational view (LDATEC77]). For simplicity, we assume that the view

consists of a single relation (referred to as a view relation) and the

representation is a single relation (referred to as a base relation) stored

in the database. The base relation consists of a set of tuples with the

following attributes

(carno, model, body_no, yr, current-value, mi, disp, dest, rc, col, loc)

while an instance of the view relation consists of a set of tuples with the

following attributes

(carno, mi, dest, disp, rc)

Each car owned by the car rental company (described below) has a tuple

corresponding to it stored in the database with car-no being a primary key.

The environment for this example is as follows. A car rental company in

a large city has a central headquarters where car purchases are made,

allocations of cars to local rental offices are made, etc. When a new car is

purchased, all information on the car Such as license plate number (carno),

body identification number, color, model, etc. are stored in the database by

headquarters database system personnel. When a car is assigned to a local

rental office, the value of the location attribute of the particular car's

tuple is set to the location of the local office to which it is assigned and

its disposition (disp) is set to 'avail', meaning that it is available to be

rented.

The function of a local rental office differs from that of the

Iheadquarters. A rental office does not neea access to all of the information

in a car tuple. For this reason, a local office's database consists of a set

of the view relation tuples described above. A local office can apply the

operations rent car, return car, maint car, return maint, and avail car to its

database represented by its view. Operations rent car and return car a'e used

when a car is rented and returned, respectively. Operations maint car and

return maint are used when a car is sent to maintenance and returned from

. .

maintenance, respectively. Operation avail car is used to obtain a set of

available cars having a specified rate class. The rental car database view

described here is a simplified version of a view described in [CLAYB81a]. In

the description of the view in [CLAYB81a], the view also has rental car

history ana maintenance history view relations.

The database view is realized as the abstract data type dbview and

specified using the constructive specification method (see Figure 10). In

this specification we assume that the data types car-number, mileage, etc. are

available for use in module dbview. Type re-set is defined as a set of car

numbers. Type dbview is a parameterized type, with parameter xloc (the value

of xloc is a local rental office location). A particular instance of dbview

is a set of tuples consisting of only those cars assigned to a particular

local rental office. For this reason the local office location does not have

to be specified as a parameter in each of dbview's operations.

module dbview(xioc: locat1on);
Togical structure

objects
type TUPLE = record ca: car number;

mi: mileage;
dest: destination;

disp: disposition;
rc: rate-class

end;
occurrence <c-Tection TUPLE >

operations
syntax

rent car: dbview x car number x oestination -- doview U
[UNDE ID

return car: dbview x car number x mileage --- dbview U
tERROR3

maint car: doview x car-number -- dbviewu LERROR)
return-maint: dbview x car number 2b dbview u[ERRORj

avail-car: dbview x rate-cTass - rc set

semantics
c: car number; a: destination; m: mileage;
r: rate class; t: TUPLE; db: dbview;

rent carTdb, c, d) =
Tf It 4 db 4- (t.cL ==c and t.disp = 'avail')
then db with [t.disp 'rented, t.dest = d]

ese UNDEI-NED;

return car(db, c, m) =
if-t (db * (t.ca = c and t.disp = 'rented')

then do with [t.disp = 'avail', t.mi = m]
ElRs R R--

maint car(db, c) =
if it 4ob 4 t.ca = c and t.disp = 'avail')

then db with [t.disp = 'maint'] else ERRdR;

return maint(ao, c) =
if 4t 4 db 4 (t.ca = c anc t.disp = 'naint
then db with [t.disp = 'avail'] else ERROR;

avail car(do, r) : It.ca I t< ub and t.rc = r and
t.disp = 'avail';

end dbview;

Figure 10. Constructive specification of a relational database view

A representation of dbview is given in Figure 11. In this

representation specification, the correspondence function VIEWMAP is defined

as a derivation of view relation tuples from base relation tuples. This is a

natural way to oefine correspondence functions for relational database views

and has been adopted in RIGEL ([ROWEL79]) and in EXTPascal ([CLAYB81a]).

representation
dO: dbview;
db = VIEWMAP(R) where

VIEWMAT-RT= {(r.ca, r.mi, r.oest, r.disp, r.rc>l
rER an r.loc = xlocj

Figure 11. A representation for view dbview

The function VIEWMAP defines an instance of obview as consisting of a set of

tuples having the five attributes: ca, mi, dest, disp, and rc. R is the

representation of instances of dbview and it is the base relation from wnich

instances of dbview are derived.

An implementation of uoview's operations is omitted here but they would

be implemented in terms of R's operations, namely appenc, delete and replace.

The interested reader should see LCLAYB81bj for an implementation of dbview

and a proof of implementation correctness for some of dbview's operations.

6.1 Comments on tne dataoase view example

The database view example was included in this paper for two reasons;

(1) to show the utility of the constructive specification method, anc (2)

to serve as an example for comparison with the algebraic specification method

in an environment where sharing of representation data occurs.

In the database view example, values of an instance of dbview may be

created by the headquarters database personnel. For example, a car tuple may

be removed from a view if the location of the car is modified, i.e. the car is

assigned elsewhere or sold, by headquarters personnel, or the headquarters may

decide to alter the rate-class of some or all of its cars.

Specifying uata abstractions in which representation data is shared

causes no pirticular problems for the constructive specification; however, it

does cause some problems for the algebraic method. The reason for this is

that with the algebraic method, the behavior of an object and the generation

of that object are intertwined. The problem incurred by the algebraic method

is that some of the constructor operations that create values of dbview are

not in dbview's operation set but instead are included in tnP underlying

database's operation set. With the algebraic specification, all values of an

abstract data type must be produced by sone sequence of constructors. To

specify doview aigehriically, we have to incluue the aki1iary (or hidden)

operations emptyview and ad car. Clayoroo, LCLAY6IbJ) provides a

complete specification of dtview using Guttag's algebraic specification

method. The specification requires 12 axioms.

7.0 Comparison of Specification Methods

Below we sumnarize properties and characteristics of constructive and

algebraic specification methods. Each method appears to have some inherent

problems that are difficult to nandle. It may seem that we are overly

criticizing the algebraic specification method. However, one of the problems

in comparing these two methods is that the algebraic method has been examined

and researched by more people than the constructive method and thus more is

known about its strengths and weaknesses.

In the algebraic approach, a data type is specified by giving a set of

axioms relating tne type's primitive operations. For the constructive

specification, the logical structure of a type is specified, thus dpfining an

abstract model of the type, and the operatiuns are specified with re.pect to

this model. With the abstract model approach, an abstract object such as a

sequence or set is selected and the type's primitive operations are specified

with respect to the abstract object. The constructive specification method

described in this paper is very similar to the abstract mooel approach;

therefore, any comments made about one applies to the other.

Algebraic specifications are usually considered to be more elegant than

specifications developed using a constructive method. If we do not consider

hidden operations as unnecessary detail then the algebraic method does not

introduce unnecessary detail. Since it has a mathematical basis in algebra,

it is well suited to formal analysis and has been used as the basis for

"semi-automatic" verification systems such as AFFIRM ([MUSSD79]). Another

feature of the algebraic specification method is that it is compact; however,

as we shall see below, algebraic specifications are not always compact.

Several authors ([FLONL79], [BERZV79], [MAJSM79]) have pointed out

some serious problems with algebraic specifications. These problems are for

the most part inherent in the basic methodology used to 6evelop the method

and, thus, are difficult to remedy. Fortunately, most of these problems are

not problems for the constructive methods. Majcter ([MAJSM79]) states that

one of the problems with algebraic specifications is the nEcessity to

introduce hidden or auxiliary operations for some specifications. These

operations are not harmful from a theoretical point of view but they do cause

two problems. The number of auxiliary operations can become quite large and

the number of axioms may increase sharply (especially if some of the

auxiliary operations must be constructors). Majster performed a case study

for the description of a file with nine (9) operations and 10 auxiliary

operations and ended up with over 50 axioms. One of the claimed benefits of

algebraic specifications, compactness, was lost in this specification.

Another problem is that the auxiliary operations have to be implemented.

Another major problem with algebraic specifications involves producing a

well-formea specification, i.e. producing a complete and consistent set of

axioms. There does not seem to be any straightforward and intuitive

mathematical procedure for checking completeness and consistency.

Inconsistencies occur when axioms result in two objects being equivalent when

in fact tney should have been different. A complete axiom set is one to which

an independent axiom cannot be added. A more thorough discussion of

completeness and consistency can be found in [GUTTJ80].

Operations in algebraic specifications are all functions. They do not

permit side effects and they can return only a single type of value. In

addition, there are problems with partial operations and error equations

([MAJSM79]). The problem with errors occurs because an error is not of the

value type produced by an operation yet it may be the value produced by an

operation. This can lead to Lontradictions. Goguen (LGk)GUJ78j) and Guttiq

([GUTTJ77]) have suggested solutions to these problems.

Verifyiig implementation correctness using a constructive specification

method is conceptually easier than verifying implementation correctness using

algebraic specifications. Flon ([FLONL79]) descriDes why this is the case.

Algebraic methods deal with values rather than objects. Values are immutable;

that is, an operation can change one value into another but it cannot change

the state of a particular value. This means that operations cannot have side

effects althougr in a typical procedural implementation operations have side

effects. For instance, in an implementation of pop and push, these stack

operations will not result in new stacks but rather will alter existing

stacks. Constructive specification methods do not suffer from this problem

since operations specified constructively deal with changing the state of

objects.

A proof of implementation correctness must be done for eacn operation in

a constructive specification whereas for algebraic specifications we must show

that an implementation satisfies each axiom. For some data types, the number

of axioms may be much larger that the number of operations. From our

experience, there is nothing to suggest showing that an axiom is satisfied by

an implementation is any easier than showing that an implementation of an

operation is correct with respect to a homorphism. This suggests that the

effort required to prove implementation correctness may be substantially

larger for the algebraic approach than for the constructive approach. If one

of the operations is changed then all of the axioms referring to the

corresponding operation will have to be reverified.

In general, we have found that designing abstractions using constructive

methoas is much easier than the algebraic specification method. Minor changes

in the behavior of an operation are easier to describe for constructive

specifications. A modification in the definition of one constructively

defined operation does not normally affect the other operations. In an

algebraic specification the meanings of the operations are defined in terms of

the relations between them, so that a change in an operation or change in an

axiom can affect other operations ana axioms. It is difficult to produce a

well-formed algebraic specification for a new data abstraction especially if

the exact behavior required is not yet completely uesigneu.

A major complaint against constructive specification methods is that

they are not minimal, i.e. tnay introduce unnecessary uetail. Proponents of

the constructive methods argue that only those properties that are necessary

and relevant to specifying semantics are specified. Auxiliary operations

required by the algebraic method to specify some data abstractions such as the

dataabase view in Figure 10 can be considered to be unnecessary detail.

Another complaint against constructive specifications is that they

suggest implementations and/or constrain the concrete objects. Berzins

([BERZV79]) states that the issues of time and space efficiency often

requires that the representation used in an implementation differ

significantly from the model used in the specification of semantics. One

problem inherent in a constructive specification method is that specifying the

semantics of complex operations may be quite lengthy. Constructive

specifications sometimes lack the succinctness found in algebraic

specifications.

In general, we nave found constructive specifications easier for the

user of a type to interpret. They permit an implementation to be more easily

developed.

From our discussion above, it appears that constructive and algebraic

approaches are ideally suited for some applications anu poorly suited for

others. Unfortunately, little attention has been devoted to the problems that

occur when one tries to integrate the kind of examples occurring in the

literature into real software written in real programming languages. The

examples used in published reports have been well known mathematical objects.

These Objects are familidr to most, thus it is diffic"lt to oiemonstrate the

value or specifylng the seuijnt),s ot ope r tior'-, t' tpe ; 1 0I, L 111101111 It 1,11'

purposes or In designing data abstractions. hne data!)ase view example in this

paper and in [CLAYBBIa], [CLAYB81bJ is an attenpt t(, i Iluctrate the imporla,,

of specificatiors in a practical situation. What is been missing in the

literature are examples that provide user oriented operations on

non-mathematical objects.

References

BERZV79 Berzins, Vdlois, A. "Abstract Model Specifu(dtiois for [a
Abstractions", Ph.D. Thesis, MIT (MIR/LCS/TR-221).

CLAY679 ClayurooK, Billy G., et al. "Logical Structire and Data Type
Definition", Proceedings of ACM 79 Conference, October 1979,
pp. 203-211.

CLAYBSO Claybrook, Billy G. ana WycKOff, Marvin P. "module: An
Encapsulation Mechanism for Specifying and Implementing
Abstract Data Types", Proceedings of tne ACM Annual Conference,
October 1980, pp. 225-735.

CLAYB81a Claybrook, Billy G. "Data Abstraction in EX" Pascal", Sperry
Research Center Research Paper SRC-RP-80-73, 'anuary 1931.

CLAYB81b Claybrook, Billy G. et al. "Defining Database Views as Data
Abstractions", Sperry Research Center Research Paper TM 55-3,
February 1981.

DATEC77 Date, C. J. An Introduction to Database Systems, Addison-Wesley,
1977.

GOGUJ78 Goguen, Josepn A., et al. "An Initial Algebra Approach to the
Specification, Correctness, and Implementation of Abstract Data
Types", Current Trends in Programming Methodology, Vol. 4, Data
Structuring, R. Yeh (ed.), Prentice Hall, 19/8, pp. 80-149.

GUTTJ75 Guttag, Jonn V. "Tne Specification and Application to Programming
of Abstract Data Types", Ph.D. Thesis, Department of Computer
Science, University of Toronto, Technical Report CSRG-59, 1975.

GUTTJ77 Guttag, John V., et al. Some Extensions to Algebraic
Specifications", Proceedings of ACM Conference on Language Design
for Reliable Software", SIGPLAN Notices, Vol. 1?, March 1977,
pp. b3-61.

GUTTJ78 Guttag, John V. et al. "Abstract Data Types and Software
Validation", CACM, Vol. 21, December 1978, pp. 1048-1064.

GUTTJ80 Guttag, Jonn V. "Notes on Type Abstraction (Version 2)",
IEEE Transactions on Software Engineering, Vol. SE-6, January 1980,
pp. 13-23.

HOARA7? Hoire, C. A. R. "Proof of Correctness of Data Representations",
A(td Infornmti . 1, 4, 1972 pp. 271-281.

MAJSM79 Majster, Mila E. "Treatment of Partial Operations in the
Algebraic Specification Technique", Proceedings of Specifications
of Reliable Software Conference , April 1979, pp. 190-197.

MUSSD79 Musser, David. "Abstract Data Type Specification in the AFFIRM
System", Proceedings of Specifications of Reliable Software
Conference, April 1979, pp. 47-57.

ROWEL79 Rowe, Lawrence A. and Shoens, Kurt A. "Data Abstraction, Views ano
Updates in RIGEL", Proceedings of 1979 ACM SIGMOD Conference, Boston,
May-June, 1979, pp. 71-81.

TAYLR76 Taylor, Robert W. and FranK, Randall L. "CODASYL Data-Base
Management Systems", ACM Computing Surveys, Vol. 8, March 1976,
pp. 67-103.

WULFW76 Wulf, William, et al. "An Introauction to the Construction and
Verification of Alphard Programs", IEEE Transactions on Software
Engineering, SE-2, 2, 4, December 1976, pp. 253-265.

WYCKM8O Wyckoff, Marvin P. "A Comparison of a Constructive and a Non-
Constructive Approach to Data Type Specification", Masters Tnesis,
University of South Carolina, June 1980.

ZILLS79 Zilles, Stephen N. "An Introduction to Data Algebras", Lecture
Notes in Computer Science, G. Goos and J. Hartmanis (eds.T,
Abstract Software Specifications, Springer-Verlay, New York,
1980, pp. 248-272.

Publications

"module: An Encapsulation Mechanism for Specifying and Implementing Abstract
Data Types", Proceedings of the ACM Annual Conference, October 1980,
pp. 225-235.

"Abstractly Identical Terms of An Abstract Data Type", Sperry Research Center
Report RP-81-9 (submitted to TOPLAS).

"Language Extensions for Specifying Access Control Policies in Programming
Languages", Sperry Research Center Report RP-80-74 (submitted to IEEE
Transactions on Software Engineering).

"A Comparison of Two Specification Methods" (in preparation).

Personnel

Billy G. Claybrook, Principal Investigator (10 months)

Anne-Marie Discepolo, co-investigator (3 months)

James C. Cleaveland, consultant (I month)

